

Low voltage AC drives for pumping water & compressors applications.

FRENIC-AQUA

Smile to the Environment

High performance enabled by the comprehensive use of Fuji technology. Easy maintenance for the end-user. Maintains safety and protects the environment. Opens up possibilities for the new generation.

Wide variation in model capacity

Model can be selected from two model types.

Standard type (EMC filter built-in type)

0.75 to 710kW (Protective structure IP21 or IP55 can be selected between 0.75 and 90kW.)

DCR built-in + EMC filter built-in type

0.75 to 90kW (Protective structure IP21 or IP55 can be selected between 0.75 and 90kW.)

Inverter capacity	EMC filter	DC reactor	Protective structure
0.75kW to 90kW	Built-in	Built-in	IP21/IP55
110kW to 710kW	Built-in	External	IP00

* The models with inverter capacity 45kW to 710kW are coming soon.

Optimum control by energy-saving functions

- Linearization function
- Temperature difference constant control and pressure difference constant control
- Energy saving functions including wet-bulb temperature presumption control
- Automatic energy-saving operation

Dedicated pump control function provided as standard

- 4PID control Cascade control Mutual operation Control of maximum starts per hour
- Dry pump detection Deceleration time for check valve protection Slow flowrate function
- End of curve detection Boost function Acceleration and deceleration at initial stage

Slim body

The first slim body design among the Fuji Electric inverters. The size is the same between IP21 and IP55.

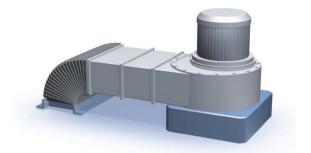
User-friendly, useful functions

- Fire Mode (forced operation) Customized logic
- Pick-up operation function Anti-jam
- Torque vector control Password function
- Real time clock User friendly, useful keypad

Wide usage for water & air treatment.

• Water purification plant and wastewater, clean water and sewage treatment plants

• Irrigation system



Pump

Characteristics in pump usage	Advantages
Cascade control (Max. 8 units + 1 unit [auxiliary motor]) (Homogenization of operation hour)	Cost reduction Longer service life of the system
Built-in PID controller	Process optimization Cost cutting
Dry pump detection	Pump protection Energy saving
Mutual operation	Initial cost cutting
Condensation prevention function	No heater required

• Blower

Characteristics in blower usage	Advantages
Built-in PID controller	Process optimization Cost cutting
Automatic energy-saving operation (Energy-saving operation according to load)	Energy saving
Condensation prevention function	No heater required
Pick-up operation	Blower protection

FRENIC -AQUA series is equipped with many functions that control the pumps and blowers used in water treatment facility optimally.

• Fluid-pressure device

- Oil pumping system
- Injection machine
- Hydraulic press machine
- Extruders

Optimal Structure Design

User friendly, easy to see keypad

- The regulator is indicated by enlarging the LCD.
 - 1. Present value (PV)
 - 2. Setting value (SV)
 - 3. Manipulating value (MV)

4. Frequency

- 6. Output voltage
 - 7. Torque

5. Output current

- 8. Rotation speed
- 9. Power consumption 10. Cumulative energy

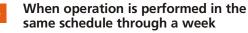
CTATUS

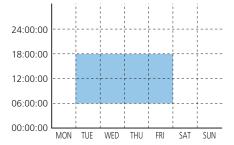
WARN ALARS

*Possible to show understandable indications through the unit conversion function. *Multi-language function: 19 languages + user customized language supported

Multi-language supported: 19 languages + user customized language

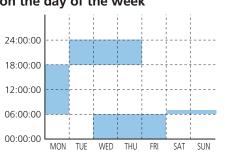
	Language								
Japanese	English	(Chinese)	German	French					
Spanish	Italian	(Russian)	(Greek)	(Turkish)					
(Malay)	(Vietnamese)	(Thai)	(Indonesian)	(Polish)					
(Czech)	(Swedish)	(Portuguese)	(Dutch)						


* Languages in parentheses are soon to be supported.


Real time clock (RTC) is provided as standard.

Alarm information with date and time

- Alarm information for last ten times is stored and displayed with date and time.
- Timer function
 - Possible to set the maximum four timers for a week.
 - Possible to set flag holidays (20 days a year).

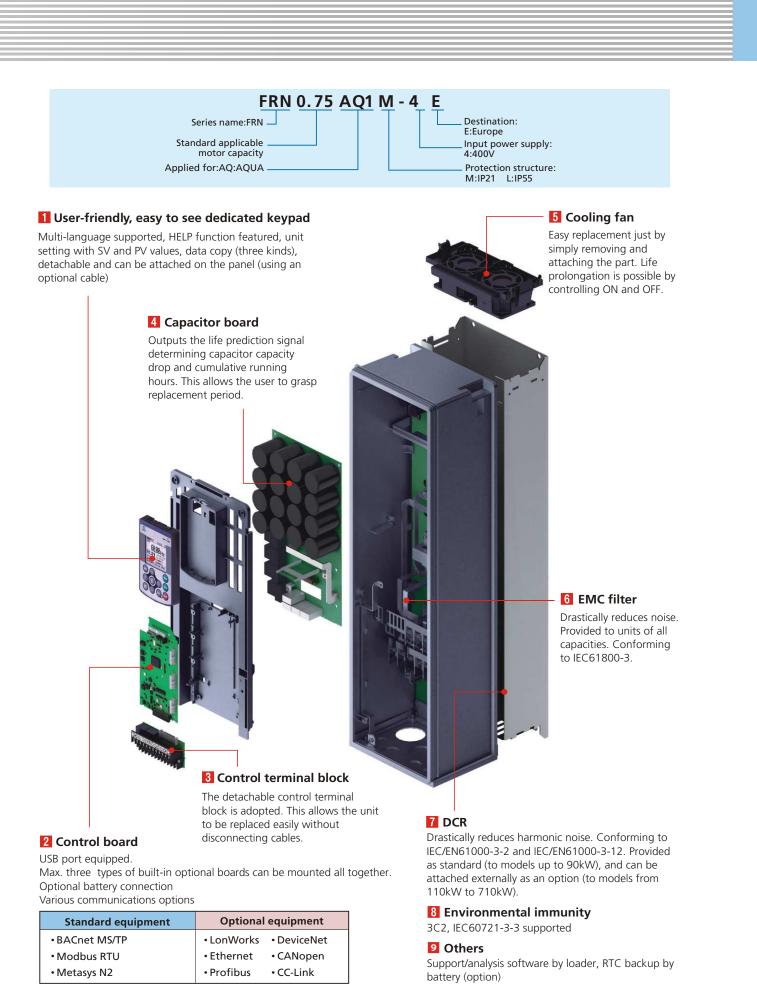

Operation schedule can be set according

Easy failure

analysis

When operation schedule varies depending on the day of the week

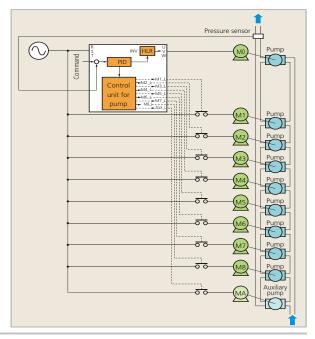
to actual condition by using four timers.



Unit conversion function between PV and SV values

• Unit conversion allows you to easily set data.

Function	Units						
	No conversion	%	RPM	l/min			
	m³/h	С	mbar	bar			
Unit conversion	kPa	mWG	mmHg	kW			
	in-wg	psi	F	ppm			
	PSI						


Optimal Function for Usage in Water Treatment

Cascade control

1. Inverter drive motor fixed method (FIXED)

The system is configured by combining the motor driven by the inverter (M0), with motors that are commercially driven (M1 to M8) and auxiliary motor (MA). The motor driven by the inverter is always fixed as motor M0. Motors commercially driven are added one by one in control when the required discharge flow rate cannot be achieved with the motor M0 only.

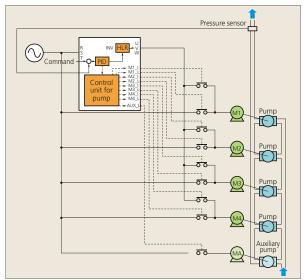
2. Inverter drive motor floating method (FLOATING)

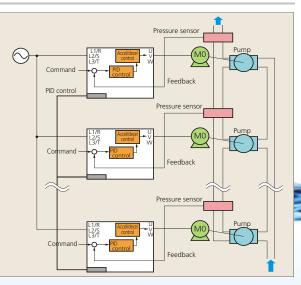
The system for this method is configured by combining the motors that can be switched between inverter drive and commercial drive (M1 to M4) and auxiliary motor that are commercially driven (MA). The motors are driven by the inverter with variable speed control at start. When the desired discharge flow rate cannot be achieved with the first motor, operations FLOATING-1 or FLOATING-2 can be selected.

Inverter drive motor floating method (FLOA TING) Max. 4 units + 1 unit (Auxiliary motor)

FLOATING-1

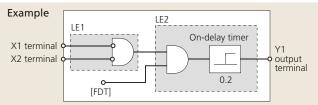
The first motor: Switched as a commercially driven motor Second and subsequent motors: Operated by inverter drive The inverter-driven motor is changed by rotation as the motor is added.

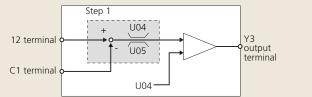

FLOATING-2


The first motor: Inverter drive continued Second and subsequent motors: Commercially driven

Mutual operation

The system can be configured without using a controller by connecting the inverters via communications. In this system, if a failure occurs to the master inverter, the next inverter is driven as the master inverter. Moreover, wiring can be saved with use of communications services, which eliminates the need of additional options by using the Modbus RTU communications.





Customized logic

The customized logic interface function is provided to the inverter body. This enables forming of logic circuit and arithmetic circuit to the digital and analog input and output

signals, allowing simple relay sequence to be built while processing the signals freely.

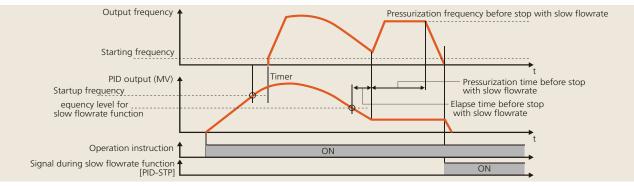
Pressure

Boost function

Frequency can be output forcibly at a fixed rate in preference to PID control. By setting the operation frequency, operation time, and acceleration time at starting, optimal operation for starting the pump can be achieved.

• Pressurizing operation can be applied for a certain period of time at the time of start.

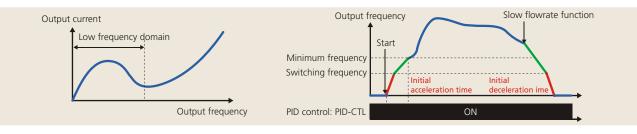
Slow flowrate function (pressurized operation available before slow flowrate)


The inverter can be stopped when the discharge rate becomes low due to increase of pump discharge pressure. Facility having a bladder tank can make the stoppage period

longer by applying pressure immediately before stoppage, which realizes energy-saving operation.

Operation frequency

Operation time


Time

Initial acceleration/deceleration time

When a pump such as a deep well pump is operated at low speed over a long period of time, the pump may be damaged since the load current is large in the low-speed range.

It is possible to provide acceleration/deceleration time specific to the low-speed range in order to avoid prolonged operation.

Other featured functions

- 4PID control
- Control of maximum starts per hour
- Abnormal pressure rise prevention
- End of curve detection
- Pick-up operation
- Dry pump detection
 - Password
 - Deceleration time for check valve protection

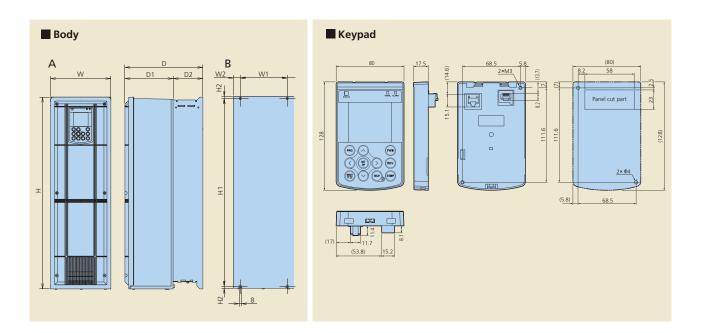
Standard Specifications

3-phase, 400V series (0.75 to 710kW)

	Item				1			Specifi	cations		1					
Model	FRN 🗌 🔲 AQ1 # -4E : AQUA		0.75	1.5	2.2	4.0	5.5	7.5	11	15	18.5	22	30	37	45	55
Applica	ble standard motor (rated outp	ut) [kW] ^{*1}	0.75	1.5	2.2	4.0	5.5	7.5	11	15	18.5	22	30	37	45	55
	Rated capacity [kVA] *2		1.9	3.1	4.1	6.8	10	14	18	24	29	34	45	57	69	85
ings	Voltage [V] *3		3-phase, 380 to 480V (with AVR function)													
ut rat	Rated current [A]		2.5	4.1	5.5	9.0	13.5	18.5	24.5	32	39	45	60	75	91	112
Output ratings	Overload current rating			1	110	%-1mir	n (Overlo	ad toler	ated int	erval: co	mpliant	with IEC	C 61800	-2)		
Ű.	Rated frequency [Hz]								50, 6	0Hz						
Y	Main power supply (No. of phase, voltag	je, freguency)					3	3-phase,	380 to	480V, 5	0/60Hz					
Iddng	Control power supply auxiliary-input (No	o. of phase, voltage, freguency)					Sin	gle pha	se, 380 [.]	to 480V	, 50/60F	lz				
Input Power Supply	Voltage, frequency variations			Voltage	: +10 to	-15% (l	Jnbaland	e rate b	etween p	ohases is	within 2	2%)*4 F	requency	: +5 to	-5%	
ut Po	Rated input current [A]		1.6	3.0	4.3	7.4	10.3	13.9	20.7	27.9	34.5	41.1	55.7	69.4	83.1	102
lnp	Required power supply capaci	ty [kVA]	1.2	2.1	3.0	5.2	7.2	9.7	15	20	24	29	39	49	58	71
	Braking torque [%]*5						20	<u> </u>					10 to	15		
Braking	DC braking			Braking	g starting	g freque	ncy: 0.0	to 60.0H	Hz, Braki	ng time	: 0.0 to 3	30.0s, Br	raking le	vel: 0 to	60%	
EMC filt	ter					Built-in	[Compl	iant with	n EMC st	andard	(IEC/EN6	51800-3:	2004)]			
DC read	tor (DCR)					E	Built-in (IEC/EN6	1000-3-	2, IEC/E	N61000	-3-12)				
Compliant with Electrical Safety Standards			Built-in (IEC/EN61000-3-2, IEC/EN61000-3-12) UL508C, C22.2No.14, IEC/EN61800-5-1:2007													
"#" Enclosure (IEC/EN60529)			IP21/IP55													
Cooling	method		Natural cooling Fan cooling													
Weight	/Mass [kg]	IP21/IP55	10	10	10	10	10	10	18	18	18	18	23	23	TBD	TBD
	ltem		Specifications													
Model	FRN AQ1 # -4E : AQUA		75	90	110	132	160	200	220	280	315	355	400	500	630	710
	ble standard motor (rated outp	ut) [kW] *1	75	90	110	132	160	200	220	280	315	355	400	500	630	710
, ibbuild	Rated capacity [kVA] *2		114	134	160	192	231	287	316	396	445	495	563	731	891	104
sgr	Voltage [V] *3			I	I		3-phase	e, 380 to	o 480V (with AV	R functi	on)				
Output ratings	Rated current [A]		150	176	210	253	304	377	415	520	585	650	740	960	1170	137
utpu.	Overload current rating				1109	6-1min	(Overloa	d tolera	ted inte	val: con	npliant v	vith IEC	61800-2	2)		
0	Rated frequency [Hz]								50, 60	Hz				,		
	Main power supply (No. of phase, voltage	ge, frequency)					3-	phase, 3			/60Hz					
ƙlddr	Control power supply auxiliary-input (No										50/60Hz	7				
ver S	Voltage, frequency variations		,	Voltage:	+10 to -	15% (Ur	-	-					equency :	+5 to -5	5%	
Input Power Supply	Rated input current [A]		136	162	201	238	286	357	390	500	559	628	705	881	1115	125
Inpu	Required power supply capaci	ty [kVA]	95	113	140	165	199	248	271	347	388	436	489	611	773	871
	Braking torgue [%]*5									o 15						
Braking	DC braking			Braking	starting	frequen	cv: 0.0 t	o 60.0H:			0.0 to 3	0.0s. Bra	aking leve	el: 0 to 6	50%	
EMC filt	ter			. 5	J		,			2		51800-3:	5			
	tor (DCR)		Buil	t-in								161000-J				
	ant with Electrical Safety Standa	urds	Dui		I								5 12)			
· · ·	losure(IEC/EN60529)		UL508C, C22.2No.14, IEC/EN61800-5-1:2007													
	method									ooling						
		1021/1055	TDD	TBD					rdfi (Joinig						
weight	/Mass [kg]	IP21/IP55 IP00	TBD	IBD	62	64	94	98	129	140	245	245	245	330	530	52/
		11 00			02	04	94	30	129	140	240	240	243	550	550	530

Models with capacity range from 45kW to 710kW are to be released soon.

- *1) Applicable standard motors are the case of Fuji Electric's 4-pole standard motors.
 *4) Interphase voltage unbalance ratio [%] = (max. voltage [V] min. voltage [V] //3-phase average voltage [V]× 67 (See IEC61800-3.) When unbalance ratio is between 2 and 3% please use optional AC reactor (ACR).
 *5) Average braking torque obtained by use of a motor.(Varies with the efficiency of the motor)



Outline drawing

Power supply	Applicable standard			Outs	ide dim	ensions	(mm)		N	lounting	dimensi	ons (mm)
voltage	motor (kW)	Inverter model	Dwg.no.	W	н	D	D1	D2	Dwg.no.	W1	W2	H1	H2
	0.75	FRN0.75AQ1 -4E											
	1.5	FRN1.5AQ1 -4E											
	2.2	FRN2.2AQ1 -4E		150	465	262	162	100		115	17.5	451	7
	3.7	FRN3.7AQ1 -4E		150	405	202	102	100		115	17.5	451	/
	5.5	FRN5.5AQ1 -4E											
	7.5	FRN7.5AQ1 -4E	A						в				
	11	FRN11AQ1 🗌 -4E	A						Б				
	15	FRN15AQ1 -4E		203	585	262	162	100		158	22.5	571	7
	18.5	FRN18.5AQ1 -4E		205									
	22	FRN22AQ1 🗌 -4E											
	30	FRN30AQ1 🗌 -4E		203	645	262	162	100		158	22.5	631	7
	37	FRN37AQ1 🗌 -4E		203	045	202	162	100		158	22.5	031	/
2	45	FRN45AQ1 🗌 -4E		265	736	285							
3-phase 400V	55	FRN55AQ1 🗌 -4E			/50	205							
	75	FRN75AQ1 🗌 -4E		300	888	370							
	90	FRN90AQ1 🗌 -4E			000	370							
	110	FRN110AQ1 # -4E											
	132	FRN132AQ1 # -4E											
	160	FRN160AQ1 # -4E											
	200	FRN200AQ1 # -4E											
	220	FRN220AQ1 # -4E											
	280	FRN280AQ1 # -4E											
	315	FRN315AQ1 # -4E											
	355	FRN355AQ1 # -4E											
	400	FRN400AQ1 # -4E]										
	500	FRN500AQ1 # -4E	1										
	630	FRN630AQ1 # -4E											
	710	FRN710AQ1 # -4E	1										

(Protective structure) : M : IP21, L : IP55


(Protective structure) : IP00

Wiring Diagram

Basic configuration diagram

(Factory shipped condition: with SOURCE mode input and enable input function)

Options

Relay output interface card (OPC-G1-RY)

This is an optional card that converts the transistor output at terminals Y1 to Y4 on the inverter body to relay output (1c). Each card has two relay outputs, and four relay outputs are available by installing two cards.

Note: When the card is mounted, the terminals Y1 to Y4 on the inverter body

Relay output:	2 circuits built-in
Signal type:	1c
Contact point capacity:	AC250V, 0.3A $\cos\phi=0$.
	DC48V, 0.5A (Resistance load)

Analog input interface card (OPC-G1-AIO)

This card allows analog input and output to be used.

Analog input:	1	analog voltage input point (0~±10V)
	1	analog current input point (4~20mA)
Analog output:	1	analog voltage output point (0~±10V)
	1	analog current output point (4~20mA)

CC-Link communications card (OPC-G1-CCL)

By connecting this card with the CC-Link master unit, the communications rate up to 10Mbps can be supported and the transmission distance is covered up to 1200 m in total.

No. of connection units: 42 units Communications method: CC-Link Ver1.10 and Ver2.0 Communications rate: 156kbps~

PROFIBUS DP communications card (OPC-G1-PDP)

This card enables operation instruction and frequency command to be set from the PROFIBUS DP master, allowing operation conditions to be monitored and all the function codes to be changed and checked.

Communications rate: 9.6kbps~12Mbps Transmission distance: ~1,200m Connection connector: 6-pole terminal block

LonWorks communications card (OPC-G1-LNW)

```
Coming soon
```

This card allows peripheral equipment (including a master unit) that is connected via LonWorks to be connected with the inverter, enabling operation instruction and frequency command to be set from the master unit.

Extension cable for remote operation (CB- S)

This cable is used in connection between the inverter body and the keypad.

Optional type	Length (m)
CB-5S	5
CB-3S	3
CB-1S	1

Relay output interface card (OPC-G1-RY2)

This optional card allows relay outputs (1a) to be added. When used in cascaded control, this card can control the seven motors. * By using the two relay outputs on the inverter body, max. 8 units and one unit (auxiliary pump) can be controlled.

Í	Relay output:	7 circuits built-in
	Signal type:	1a
	Contact point capacity	: AC250V, 0.3A cos φ=0.
		DC48V, 0.5A (Resistance load)

Analog current output interface card (OPC-G1-AO)

This card allows two analog current output (4 to 20mA) points to be used. The card cannot be used together with OPC-G1-AIO.

DeviceNet communications card (OPC-G1-DEV)

This card enables operation instruction and frequency command to be set from the DeviceNet master, allowing operation conditions to be monitored and all the function codes to be changed and checked.

 No. of connection nodes
 max. 64 units (including the master unit)

 MAC ID:
 0~63

 Insulation:
 500V DC (photocoupler insulation)

 Communications rate:
 500kbps/250kbps/125kbps

 Network consumed power
 max. 80mA, 24V DC

CANopen communications card (OPC-G1-COP)

This card enables operation instruction and frequency command to be set from the CANopen master (such as PC and PLC), allowing all the function codes to be set and checked.

 No. of connection nodes
 127 units

 Communications rate:
 20k, 50k, 125k, 250k, 500k, 800k, 1Mbps

 Transmission distance:
 ~2,500m

Ethernet communications card (OPC-G1-ETH)

Pt100 temperature sensor input card (OPC-G1-PT) Coming soon

Battery (OPK-BP)

Used for the real time clock activated while the inverter power is off. The real time clock can be operated even when no power is supplied inverter at electric power interruption.

Headquarters Europe **Fuji Electric Europe GmbH** Goethering 58

63067 Offenbach/Main Germany Tel.: +49 69 669029 0 Fax: +49 69 669029 58 info_inverter@fujielectric.de www.fujielectric.de

Germany South **Fuji Electric Europe GmbH** Drosselweg 3 72666 Neckartailfingen Tel.: +49 7127 9228 00 Fax: +49 7127 9228 01 hgneiting@fujielectric.de

Switzerland **Fuji Electric Europe GmbH** Park Altenrhein 9423 Altenrhein Tel.: +41 71 85829 49 Fax.: +41 71 85829 40 info@fujielectric.ch www.fujielectric.ch

France

Fuji Electric Europe GmbH 265 Rue Denis Papin 38090 Villefontaine Tel.: +33 4 74 90 91 24

Fax: +33 4 74 90 91 75 info_inverter@fujielectric.de

United Kingdom **Fuji Electric Europe GmbH** Te.: +44 7 989 090 783 info_inverter@fujielectric.de

Headquarters Japan Fuji Electric Co., Ltd.

Gate City Ohsaki East Tower, 11-2 Osaki 1-chome, Shinagawa-ku, Chuo-ku Tokyo 141-0032 Japan Tel: +81 3 5435 7280 Fax: +81 3 5435 7425 www.fujielectric.com

Germany North **Fuji Electric Europe GmbH** Friedrich-Ebert-Str. 19

35325 Mücke Tel.: +49 6400 9518 14 Fax: +49 6400 9518 22 mrost@fujielectric.de

Spain

Fuji Electric Europe GmbH Sucursal en España Ronda Can Fatjó 5, Edifici D, Local B

Parc Tecnològic del Vallès 08290 Cerdanyola (Barcelona) Tel.: +34 93 5824333 Fax: +34 93 5824344 infospain@fujielectric.de

Italy

Fuji Electric Europe GmbH Via Rizzotto 46

41126 Modena (MO) Tel. +39 059 4734266 Fax +39 059 4734294 info.italy@fujielectric.de